Back channel vs. Co-optimization

IBIS ATM Teleconference July 1, 2014

R

© Mentor Graphics Corp., 2014, Reuse by written permission only. All rights reserved.

Introduction

- The discussions on BIRD 147 and the corresponding SiSoft proposals came to a stalemate
- A vote attempting to make a group decision ended up with a tie in the IBIS-ATM meeting on May 27, 2014
- Two major member companies have different preferences
 - Intel prefers BIRD 147 because it supports proprietary communications between Tx and Rx
 - Altera prefers the SiSoft proposal because it supports cooptimization between legacy Tx AMI models and new "optimizer" Rx AMI models
- IBIS "cannot afford" to lose the support and interest of major companies in AMI modeling...

Back channel vs. Co-optimization

High level summary of the proposals

- BIRD 147 proposes the usage of a single .bci file for the back channel communication between Tx and Rx
 - the parameter strings which are exchanged between the models are generated by the models, adhering to the rules in the .bci file
 - the EDA tool is responsible to take the parameter string from one model and pass it to the other model
 - the EDA tool is not expected (or allowed?) to make any modifications to these strings while passing them around
- SiSoft proposes to use AMI parameters placed in the .ami file to facilitate Tx/Rx communication/optimization
 - all optimization parameters are first read by the EDA tool from the .ami file and interpreted/processed according to the rules in the specification and passed to/from the DLLs as needed

Back channel vs. Co-optimization

What is the main difference?

- Note that in both proposals the parameter strings are passed in/out of the AMI DLL by the EDA tool
 - the DLL function signatures are not changed
 - BIRD 147 builds on BIRD 128 to allow AMI_parameters_out to be used for passing strings into the GetWave function
 - not stated (yet) but it seems that the SiSoft proposal will also need BIRD 128 or something equivalent
- However, in BIRD 147, the strings are generated by the AMI DLLs based on the .bci parameters and the EDA tool only acts as a "mailman"
- In the SiSoft approach the strings are generated and processed by the EDA tool based on .ami parameters

 there may be a "mailman" mode in this proposal too

Back channel vs. Co-optimization

What do we need to keep Intel happy?

- Intel likes the .bci file approach because the .bci file is allowed to have proprietary content
 - another advantage is that both Tx and Rx uses the same .bci file, reducing the possibility for miscommunication which may arise when the Tx and Rx .ami files are incompatible
- These are strong arguments for using the .bci files
- Could we achieve the same capabilities with the SiSoft approach using Model_Specific AMI parameters in the .ami file?

What do we need to keep Altera happy?

- Altera likes the SiSoft approach because it allows for cooptimization with legacy Tx AMI DLL-s without recompiling them
 - additional (new) .ami file parameters are acceptable (and probably needed) to achieve this goal
- Could we achieve the same capabilities with BIRD 147 if the EDA tool would be allowed to be "more involved"?
 - let the EDA tool read/interpret .bci files for those DLLs which don't
 - e.g. an Rx DLL wouldn't know that it is not talking to a real Tx DLL
 - this would only work with standard .bci files because the EDA tool would not be able to interpret proprietary .bci file content
 - the .ami parameters which are needed in the SiSoft proposal to help the EDA tool to adjust the Tx DLL taps could also be used for this approach

Back channel vs. Co-optimization

6

Summary

- It seems that BIRD 147 could be extended to support system level optimization by making provisions for the EDA tool to be "more involved"
- Not sure whether the SiSoft proposal can be extended in a similar manner to support proprietary protocols through Model_Specific .ami parameters
- I would recommend to look into these technical details and find a solution that supports the needs of both of our major semiconductor vendors
 - after all, we always complain that we don't get enough feedback from IC vendors
 - now we have feedback, we should act on them
 - This challenge doesn't seem to be unsolvable

